It was an honor to serve as the 2000 Birdsall-Dreiss Distinguished Lecturer – to fulfill the vision of John Birdsall, celebrate the career of Shirley Dreiss, and follow in the footsteps of so many distinguished hydrogeologists. I was fortunate that the Dean of my college matched the endowment from the Hydrogeology Division and gave me the year off from teaching. I was, perhaps, less fortunate that my colleagues and the Dean made me department chair.

Originally, I planned to offer two lectures. I had two requests for the variable-density flow lecture and 83 requests for the lecture dealing with the contamination of municipal wells G & H in Woburn, Massachusetts. I never gave the variable-density flow lecture. I presented the Woburn lecture 54 times, at 40 universities, 8 liberal arts colleges, 3 USGS offices, and 3 conferences. I gave the lecture to geologists, civil engineers, chemists, toxicologists, environmental scientists, and lawyers. I made presentations in 2 foreign countries and 27 states via 34 airports, 8 airlines, and 11 indistinguishable mid-sized rental cars. I got lost twice. Along the way, I hiked in the Grand Canyon, the White Mountains, and the Japanese Alps. I played golf at Pinehurst, Myrtle Beach, and two PGA National Courses. I ate lots of great food and enjoyed some mighty fine wine. If any of you tell my Dean how much I enjoyed this past year, I’ll track you down like an absentee ballot in Florida.

I’d like to acknowledge the efforts of people without whose help I would not have been able to do this. First and foremost, Maura Metheny – it is Maura’s M.S. and Ph.D. research that are the foundation of my Woburn talk. I’d also like to thank my wife. She shoveled more snow, mowed more grass, and handled more family matters than I had a right to ask. I am appreciative of my colleagues in the Hydrogeology Program at Ohio State, Frank Schwartz, Motomu Ibaraki, Anne Carey, and Yo Chin, for covering my courses and advising my students during all the times I was away representing the Division and during all the times they thought I was away representing the Division. I’d like to thank all of you who hosted me on the trips I was able to make. You were gracious and generous.

Woburn has been and continues to be a fascinating project. Through the mock trial undergraduate course I teach in our honors program at Ohio State and through Maura’s research, I’ve visited Woburn 19 times, met many of the plaintiffs whose children contracted and died of leukemia, spoke with the lawyers involved in the famous trial, met Jonathan Harr, author of the book “A Civil Action,” and benefited greatly from the cooperation of the consulting firms, the USGS, and the USEPA and its contractors in acquiring the information and data used in the mock trial course, our research, and in the Birdsall-Dreiss Distinguished Lecture. In my dreams, I never envisioned that my interest in Woburn would lead me to speak at Harvard Law School. The highlight of my year, however, was traveling to Japan with Mary Anderson and her husband Charles, Charlie Andrews, Chunmiao Zheng, Phil Bennett, and Motomu Ibaraki and presenting the lecture at a conference at Rissho University and at the AGU Western Pacific Meeting in Tokyo. I am especially grateful for the times when momentarily overcome by panic while changing trains in Tokyo among thousands of rushing Japanese commuters that Mary and Phil are, above all, tall. After the conference several of us were guests of Katsuyuki Fujinawa, a Professor at Shinshu University, who toured us around the Japanese Alps, ancient temples and castles, and wonderful restaurants.

As is customary for the Birdsall-Dreiss Lecturer, I’d like to offer a few comments on the state of hydrogeology based on my observations this past year. The most obvious is that there are a lot more of us than there used to be. We seem happy in our work and enjoy our role at the often poignant, often perplexing interface between science and society. We continue to work on challenging projects that are applied and theoretical in character, microscopic to megascopic in scale, and local to global in perspective. We are, by and large, relatively well funded by a variety of federal, state, and local sources.

I think there is a fundamental reason why we enjoy and will to continue to enjoy our work. As a group, hydrogeologists are adaptive. We have a blend of geology, physics, chemistry, mathematics, and more recently biology that facilitates creative thought and enables us to
unearth new problems and create new disciplines. It is almost bewildering to stay abreast of the diversity of research performed by hydrogeologists. We continue to be involved in water-supply work, contaminant problems, and engineering projects, but many more of us are branching out into nontraditional areas involving sedimentary architecture, faulting and tectonics, mantle convection, subsidence, ecosystem sustainability, landscape evolution, climate change, and biologic controls on geologic processes. We publish in a widening array of journals, which I interpret as a measure of our ability to perform interdisciplinary research.

At Ohio State, we have a T-shirt with a picture of a Cambrian trilobite on the front and the words “Evolve or Die” on the back. I saw no evidence this year to suggest our future extinction and lots of evidence to demonstrate our creativity, scientific curiosity, and use of new technologies. I see the short-term and long-term prognoses for our discipline to be good. The future of hydrogeology may not be as exhilarating as it was in the 1980’s, but it will never again be as narrowly defined as it was in the 1950’s and 1960’s.

After 54 Birdsall-Dreiss presentations, you begin to feel like your daily routine is repeating itself, much like Bill Murray’s character did in Punxsutawney, Pennsylvania in the movie “Groundhog Day.” Don’t think for a minute that I didn’t have the time of my professional life doing it.

News & Notes

Fogg to serve as Birdsall-Dreiss Lecturer
Graham E. Fogg has been selected as the 2002 Birdsall-Dreiss Lecturer. He received a B.S. in Hydrology from the University of New Hampshire, an M.S. in Hydrology and Water Resources from the University of Arizona, and a Ph.D. in Geology from The University of Texas at Austin, where he also worked at the Bureau of Economic Geology during 1978-1989. In 1989 Graham relocated at University of California, Davis. He has 25+ years experience researching and teaching about flow and transport processes, modeling of heterogeneous subsurface systems, and groundwater analysis pursuant to problems such as groundwater contamination (MTBE, perchlorate, pesticides, nitrate), groundwater resource sustainability, high-level nuclear waste isolation, coal mining, and petroleum reservoir characterization and recovery. Graham’s research interests include transport processes in heterogeneous systems, geologic and stochastic characterization of aquifer heterogeneity, natural attenuation, remediation, long-term analysis of non-point-source groundwater contamination, regional hydrogeology, and heat transport in groundwater. He is currently Professor of Hydrogeology at the University of California, Davis where he teaches courses in groundwater hydrology, groundwater modeling, applied geostatistics, and water resources. He served as Chair of the Hydrologic Sciences Graduate Group from 1993 to 1998 and Chair of the Hydrology Program from 1998 to 2001.

Dr. Fogg will be offering 3 lectures (abstracts below). Please visit his website for information on scheduling a visit for your organization (http://lawr.ucdavis.edu/faculty/fogg/) or contact him directly (gefogg@ucdavis.edu).

Plume Behavior in Heterogeneous Geologic Systems: Natural Attenuation, Remediation, and the Role of Diffusion. The subsurface is inherently heterogeneous, three-dimensional, and commonly composed not only of aquifer materials but also large fractions of intermingled aquitard materials (e.g., silt and clay beds). Molecular diffusion rather than advection can be the dominant physical transport process in the aquitards. Investigators commonly interpret field data on groundwater contaminant concentrations with the help of conceptual models that are less than three dimensional, less heterogeneous than the actual system, and lacking representation of diffusion into aquitards. Our recent research shows how reliance on such models can lead to mischaracterization of not only the plume but also remediation success, natural attenuation, and scale-dependent dispersion.

Development of improved geostatistical methods
(TProGS) for modeling hydrostratigraphy and of a fast random-walk particle method (RWHET) for accurate simulation of advection, dispersion and diffusion-dominated processes provide the necessary tools for modeling transport processes in typically heterogeneous media, exemplified by alluvial fan systems of Livermore Valley, eastern San Joaquin Valley, and the South Tahoe basin, California. All of these geostatistical simulations, which are based on field borehole data and geologic concepts, generate heterogeneous representations of aquifers that are extensively connected networks of channel deposits, except where interrupted by paleosol sequence boundaries (Kings River fan, San Joaquin Valley) or other unconformities. In two-dimensional sections, the aquifers typically appear to be disconnected lenses. Three-dimensional transport simulations consistently produce simulated plumes having important characteristics that are lacking in conventional models but consistent with field observations: (1) rapid plume migration along preferred pathways, in both lateral and vertical directions, and (2) substantial retention of solute mass in aquitard materials near the source for decades or centuries, even when the source is an instantaneous pulse. Apparent longitudinal dispersivity (a_L) of simulated plumes grows spatially and temporally in accordance with generic data on a_L, suggesting that scale-dependent dispersion can be more an artifact of diffusion processes than an indicator of multi-scale heterogeneity. The preferential flow down sinuous pathways produces plumes that would easily be missed by conventional monitoring well networks. Animation of plume evolution with and without the heterogeneity and with wells pumping demonstrates the dominant role of the heterogeneity and groundwater production on plume evolution. Mass accounting among facies demonstrates that most of the mass being sequestered is in the aquitards. Sensitivity analysis shows that relatively small changes in the diffusion coefficient can change the distribution of mass significantly, although the overall plume behavior remains essentially unchanged. Remediation experiments show that the slow release of contaminants by diffusion and advection from low-permeability materials may lead to exceedingly long times (decades to centuries) for pump-and-treat clean up. Results also show that even if advanced remediation technologies could succeed in removing contamination from the aquifers (alluvial channels), back-diffusion and advection out of the aquitards can cause concentrations in the aquifers to increase again to levels of concern for decades into the future.

Groundwater Vulnerability and the Meaning of Groundwater Age Dates. Regional-scale analyses of flow and transport in two groundwater basins demonstrate hydrogeologic approaches for characterizing the vulnerability of groundwater to contamination and lead to important implications about the meaning of groundwater age dates and the sustainability of groundwater quality. The approach combines detailed models of three-dimensional hydrostratigraphy with a backward-time solution of the advection-dispersion equation (ADE). Results for the Salinas Valley, California show that, owing to heterogeneities represented through geostatistical modeling, the simulated regional spatial patterns of nitrate occurrence agree closely with field data from wells. The transport simulations suggest time lags of more than 30 yr for breakthrough at well screens 55 m below the water table, implying that nitrate groundwater contamination detects, which began emerging in the 1970’s, originated from land use practices of circa 1940’s. The random-walk solution of the backward-time ADE also produces estimates of the age distributions of groundwater pumped by individual wells (i.e., ages of individual water “particles” reaching the well screen). The simulated groundwater ages typically range from decades to over 100 years within individual water “samples,” suggesting that if nitrate-loading rates do not decline appreciably, historical breakthroughs of contaminants at wells merely represent the beginning of gradual deterioration in groundwater quality.

A more detailed analysis of both hydrostratigraphy and transport in the eastern San Joaquin Valley, California leads to refinements in the vulnerability mapping approach and further investigation of age distributions in water samples. A new approach to modeling alluvial fan heterogeneity uses geostatistical simulation in a sequence stratigraphic framework in which paleosols form sequence boundaries and semi-confining beds. This model of multi-scale heterogeneity produces detailed maps of vulnerability that more accurately reflect the geology, including nonstationary heterogeneity. Simulated CFC-11 and -12 age dates agree closely with field measured CFC-11 and -12 ages. Importantly, however, the distributions of water age reaching the well screens in the model at any instant in time are both broad (many decades) and skewed, except at shallow (<10 m) wells. Significant dispersion due to heterogeneity causes mixing of relatively old water (> 40 yr) with young water in most wells, even when the well screen is short (<1 m). Consequently, the “true” average groundwater age differs significantly from the CFC age. These results suggest that groundwater age date measurements alone are inadequate for estimating vulnerability to contamination in systems with typical alluvial heterogeneity.

A Geologic Approach to Simulation of Subsurface Hydrology. The unknown heterogeneity of the subsurface remains a major obstacle to reliable simulation of subsurface flow and transport processes. Characterization of spatial patterns in properties with typically sparse data requires knowledge of the geologic processes that created the patterns. A geostatistical approach based on transition probability theory provides a means for quantitative modeling of three-dimensional...
hydrostratigraphy through the use of commonly available field data as well as geologic fundamentals and knowledge of the depositional processes. By modeling inter-facies transition probabilities with Markov chains, an intuitive method for building three-dimensional models from basic geologic principles is developed, extending qualitative geologic characterization into the quantitative realm necessary for flow and transport simulation. This geologic/geostatistical technique, implemented with the software TProGS, uses the hard data together with interpretive input on proportions, average lengths, and juxtapositioning of geologic facies to create multiple realizations of heterogeneity. The resulting characterizations honor fundamental probability laws while preserving observed or inferred facies proportions, continuity, asymmetries (e.g., fining upward sequences), and facies relations (e.g., levee adjacent to channel facies). Lateral facies relations, which are typically undersampled, can be modeled based on the observed vertical patterns in facies through the use of Walther's Law. Furthermore, the approach can incorporate nonstationarities such as spatially varying dip angles, or more severe nonstationarity, such as unconformities and transitions between different depositional environments. Example applications in alluvial fan and fluvial environments depict the resulting hydrostratigraphic models and demonstrate the significance of highly resolved heterogeneity in the simulation of flow and transport, while providing a fair degree of field validation with hydraulic and groundwater age-date data.

Division Member Serves as Director
Division member Dave Stephenson is serving as Interim Executive Director of GSA March to September 2001. Dave is employed by S.S. Papadopoulos and Associates. He has a long history of activity with GSA including Council, and serving as President of the Society.

International Association of Hydrogeologists
Former Chair of the Hydrogeology Division, Lenny Konikow, has recently been elected to be Chair of the U.S. National Committee of IAH. He invites all IAH members, and any other hydrogeologists interested in international activities and global aspects of ground water, to an informal get-together immediately following the Hydrogeology Division Luncheon and Business Meeting at the Annual GSA Meeting in Boston in November. Any Hydrogeology Division members who would like more information about the goals of IAH and membership (low cost includes a subscription to the journal Hydrogeology) should send an e-mail to Lenny at <lkonikow@usgs.gov> or to Colin Booth (Secretary-Treasurer) at <colin@geol.niu.edu>.

EEG Journal News
Environmental and Engineering Geoscience (EEG) is one of the official publications of the Geological Society of America. It is cosponsored by the Association of Engineering Geologists. EEG seeks contributions, including case histories, that involve the use of geology in the broadest sense (hydrogeology and engineering geology in particular) in the service of society. The Editor is also seeking nominations or recommendations for associate editors. EEG associate editors' responsibilities are: 1) to assist in the review of manuscripts and 2) to be on the alert for and solicit excellent articles that represent the applications of the geosciences. If interested or if you have recommendations please e-mail the Editor, Jack Sharp (jmsharp@mail.utexas.edu).

2000 Annual Business Meeting Minutes
Ralph K. Davis, Secretary-Treasurer

The 2000 Annual Hydrogeology Luncheon, Awards Ceremony and Business Meeting of the Hydrogeology Division of the Geological Society of America (GSA) was held Tuesday, November 14, 2000 at the Reno Hilton, Reno, Nevada. Chairman Stephen Wheatcraft introduced the Division officers, awardees, and special guests. Awards were presented by Chairman Wheatcraft immediately following the luncheon.

Student Research Awards were presented to the following:

Tracey L. Carpenter, Arizona State University, A Stable Isotope Evaluation of Non-Equilibrium Condensate from Atmospheric Water Vapor, Project Supervisor, Dr. L. Paul Knauth.

Michelle L. Kearney, University of New Mexico, Rates and Pathways of Nitrate Attenuation in the Hyporheic Zone of a First-Order Mountain Stream, Project Supervisor, Dr. Michael E. Campana.

Susan E. Kelly, Clemson University, Characterizing Spatial and Temporal Variations in Baseflow, Project Supervisor, Dr. Larry Murdoch.

Aaron J. Mango, Florida State University, Tidally Induced Pressure Wave Propagation and Attenuation in an Unconfined Coastal Aquifer, Project Supervisor, Dr. David Jon Furbish.

Shaili M. Pfeiffer, University of Wisconsin-Madison, Groundwater-Surface Water Interaction in a Floodplain Savanna Wetland, Project Supervisor, Dr. Jean M. Bahr.

Heather K. Wood, University of Kansas, Strontium Isotopes as Environmental Indicators of Mineral Weathering: A study of Interbedded Carbonates and Siliclastics of the Konza Prairie Long-Term Ecological Research Site, Northeastern Kansas,
Biographies of Officer Candidates

William W. Simpkins. Born in Granite City, Illinois, December, 1954, has been a GSA member since 1979. Education: Augustana College (Rock Island, IL), B.A. in Geology, 1976; University of Wisconsin-Madison, M.S. degrees in Geology and Geophysics and in Water Resources Management, 1979; University of Wisconsin-Madison, Ph.D. in Geology and Geophysics, 1989. He was a Research Associate with the University of Texas at Austin, Bureau of Economic Geology (BEG), 1979-1985. Research Liaison for BEG to the Salt Repository Project Office at Battelle Memorial Laboratories in Columbus, Ohio, 1982-1983. An Assistant Professor (1989-1995) and Associate Professor (1995-present) of Geology at Iowa State University in Ames, IA, and faculty member of the Water Resources Program. Author or co-author of more than 90 journal articles, conference proceedings, field trip guidebooks, and technical reports. Service to GSA and the Hydrogeology Division includes 2nd Vice-Chair (2000), North-Central Section Representative for the Hydrogeology Division, 1990-present; Hydrogeology Liaison to the Management Board, North-Central Section, 1992-present; Penrose Conference Co-Convenor with John Cherry and Dave Mickelson, 1994; Session Co-Chair, 1992 (2); Theme Session Co-Convenor, 1996 (2); Chair, Hydrogeology Division Penrose Conference Committee, 1994-1998; Field Trip Chair and Trip Leader, 1996 North-Central Section GSA Meeting in Ames, IA; Hydrogeology Program Chair for Annual Meeting in Denver (1999); host for 7 Birdsall-Dreiss Distinguished Lecturers; member of GSA Boston (1993) and Denver Mile-High Chorales (1996). Other professional activities: Associate Editor of Ground Water (1996-present); Member of NAS-NRC Board on Agriculture Committee to evaluate the USDA National Research Initiative, 1998-present; Chair and Field Trip Leader for Tri-State Geological Field Conference in Ames, IA, 1993; Geology Alumni Advisory Board, Augustana College, 1990-1992. Member of AGU, AGWSE, AEEP, Sigma Xi, Arkansas Groundwater Association, Iowa Academy of Science, and Geological Society of Iowa. Professional interests include the hydrogeology of till, water-quality problems related to agriculture, the hydrogeology of re-established riparian buffers, application of isotopes to hydrogeology, and field methods in hydrogeology.

Ballot for Election of Officers for 2002
GSA Hydrogeology Division

Chair
William W. (Bill) Simpkins
(Write in ___________________________)

First Vice-Chair
Robert W. Ritzi, Jr.
(Write in ___________________________)

Second Vice-Chair
Christopher E. Neuzil
(Write in ___________________________)

Secretary-Treasurer
Ralph K. Davis
(Write in ___________________________)

Instructions:
1. Vote for no more than one officer for each of the positions.
2. Sign, address, and date the opposite side of this form.
3. Fold, staple or tape, and First Class stamp the form.
4. Form must be received at GSA headquarters no later than September 7, 2001.
For a legal vote, this sheet must bear the signature of the voter.

From ______________________________
Signature ______________________________
Address ______________________________
Date ___________

Hydrogeology Division
Geological Society of America
P.O. Box 9140
Boulder, CO 80301-9140

Fold here, and staple or tape

Place stamp here
Project Supervisor, Dr. Gwendolyn L. Macpherson

The chair recognized the accomplishments of Professor E. Scott Bair during his tenure as the 1999-2000 Birdsall-Dreiss Distinguished Lecturer. Dr. Steve Ingebritsen, United States Geological Survey, was introduced as the 2000-2001 Birdsall-Dreiss Distinguished Lecturer.

A plaque for the Distinguished Service Award was presented to Leonard F. Konikow, Research Hydrologist with the United States Geological Survey, for his contributions to the Hydrogeology Division, the Geological Society of America, and hydrogeology over the course of his career. A summary of major accomplishments was documented in a brochure provided for each person attending the luncheon.

The O.E. Meinzer Award was presented to Dr. Francis H. Chapelle, Research Hydrologist with the United States Geological Survey. Dr. Chapelle was presented with a plaque and a miniature of the Meinzer Bowl for his significant contribution to the field of hydrogeology with specific reference to the following papers:

The annual business meeting was called to order at 2:05 p.m. after completion of presentation of awards. The first order of business was reading of the necrology followed by a moment of silence. Chairman Wheatcraft presented the state of the Division indicating that the total number of abstracts submitted within the Division and the membership of the Division had increased at a rate greater than GSA as a whole.

The Secretary/Treasurer report was presented by J. Van Brahana. For the period ending December 31, 2000 Division revenues and expenses were:

Revenue from dues ($8,584.00) and other sources ($1,124.70) equals $9,708.70. Expenses include the annual meeting, newsletter, postage, awards and the Birdsall-Dreiss lecture tour for a total of $7,134.02. There was net income for the year of $2,574.68. This resulted primarily from savings due to the electronic distribution of the newsletter. The net income combined with the net assets of the Division at the beginning of January 2000 ($21,343.85) leaves a balance of $23,918.53 in the unrestricted funds for the Hydrogeology Division.

Van also reported that the Division has 1,420 members and is the third largest within the Geological Society of America.

Dr. Bob Ritzi provided a report on the status of the Division's program for the 2000 annual meeting indicating that the Division sponsored 29 topical sessions that included 445 abstracts. Dr. Anne Carey was introduced as the Hydrogeology Division's joint technical program representative for the 2001 annual meeting scheduled for Boston, and Dr. Carol Wicks has agreed to take over these duties for the 2002 annual meeting. Dr. Ed Harvey is the Hydrogeology Division's representative for Environmental Geosciences, taking over from Carol Wicks.

A newsletter update was provided by Dr. Ira Sasowsky. The delivery of the newsletter via electronic format has resulted in significant savings. Ira also indicated that the new format could allow for more direct mailings of timely events rather than trying to pack all the information into two newsletters each year. When combined with the Division's Website information, dissemination to Division members should become more efficient and timely.

Dr. Dave Diodato is undertaking maintenance of the Hydrogeology Division's Website page. He is hopeful that the WEB site will allow an avenue to reach out to members and others with some of the accomplishments of the Division.

Dr. Mary Anderson provided a report from GSA Council. She indicated that the Council would be receptive to new or additional members from the Hydrogeology Division. This is great considering we are the third largest Division in GSA.

Dr. Matt Davis, the Division's representative to SEPM, said SEPM is interested in making a stronger link with the Hydrogeology Division. This might occur by

Continued on page 8
coordinating SEPM and Hydrogeology Division meetings at GSA.

The final order of business occurred when Stephen Wheatcraft turned over the chair duties to Dr. Jean Bahr. Jean introduced new officers for the year as: Jean Bahr – Chair, Bill Simpkins – First Vice Chair, Robert W. Ritzi – Second Vice Chair, Ralph K. Davis – Secretary/Treasurer, and Stephen Wheatcraft – Past Chair.

The meeting was adjourned at 3:15 pm.

North-Central Update
Bill Simpkins, Representative

The 35th Annual Meeting of the North-Central Section, GSA, was hosted by the Department of Geography-Geology, Illinois State University, and the Illinois State Geological Survey. The meeting was held April 23-24, 2001, in the Bone Student Center on the Illinois State University campus. Five technical sessions dealing with hydrogeology were offered. On Monday, April 23, 17 papers were offered in technical sessions entitled Environmental, Engineering, and Hydrogeology and (interestingly enough) Hydrogeology, Environmental and Engineering Geology (Posters). On Tuesday, April 24, 7 total papers were offered in technical sessions entitled Groundwater Problems in Expanding Suburban Areas (Sponsored by the Illinois Groundwater Association) and Hydrogeological and 3-D Mapping Using Geophysics. Eight additional papers were offered in an afternoon technical session Environmental Site Assessments: Applications, Methods, and Resources. In addition to technical sessions, a pre-meeting workshop entitled Geological Models for Groundwater Flow Modeling was given on April 22 by Dick Berg of the Illinois State Geological Survey and Harvey Thorleifson of the Geological Survey of Canada. The workshop was designed “…for those working on geologic models for groundwater flow modeling, particularly concerning the development and management of the large diverse data of variable quality that are required for 3-D geologic models. Emphasis was on the Quaternary and pre-Quaternary deposits that host potable groundwater and that are the context of most waste-disposal issues.” A pre-meeting field trip on Saturday, April 21, investigating the Quaternary and Environmental Geology of the Lower Illinois River Valley and Metro East St. Louis Area was lead by Dave Grimsley, Andrew Phillips, Hong Wang, and Leon Follmer, of the Illinois State Geological Survey. Although the trip concentrated on Quaternary deposits of southwestern Illinois, slope stability, soil erosion, wetland remediation, resource, and groundwater issues also were also discussed. The Illinois Groundwater Association Spring Business Meeting and Luncheon was held on Monday, April 23, noon–1 p.m., in the Bone Student Center. The North-Central Section Banquet on Monday, April 23, 7:15 p.m., featured Steve Ingebritsen of USGS, our own Birdsall-Dreiss Distinguished Lecturer, presenting his talk on “Land Subsidence.”

Note that the 2002 meeting will be a joint meeting with the SE Section of GSA in Lexington, KY. Dates are April 3-5, 2002.

Upcoming GSA Meetings

Management Board Meeting: New Time
Boston - 2001

The Management Board of the Hydrogeology Division has a revised schedule for their meetings at the Fall 2001 GSA Annual Meeting. The Board will meet from 11 a.m. -1 p.m. on Sunday, November 4th, and from 7-9 a.m. on Wednesday, November 7th. The meeting place has not yet been finalized, but will be published in the Annual Programs book.

Ground-Water Discharge to Estuaries
Boston - 2001

Direct ground-water discharge to an estuary can represent a significant volumetric component of the water budget for an estuary’s watershed. The flux and chemistry of these discharging ground-waters can have a direct effect on the local ecology. A special session to address this topic is being convened at the 2001 Annual Meeting by Thomas E. McKenna (Delaware Geological Survey) and Jonathon B. Martin (University of Florida). The session will seek to bring together researchers from the fields of hydrogeology, limnology, ecology, oceanography, and geophysics to facilitate an interdisciplinary exchange of ideas on this problem. Further information can be found at www.udel.edu/dgs/tmck/sgd.

Short Course on Environmental Isotopes
Boston - 2001

A short course entitled: “Applications of environmental isotopes to watershed hydrology and biogeochemistry” is being sponsored by the Hydrogeology Division. It will be taught by Carol Kendall and Thomas Bullen of the US Geological Survey, Menlo Park. See the GSA Website for further information.

Wicks to Serve as 2002 Technical Chair

Carol Wicks of the University of Missouri will serve as the Hydrogeology Division Technical Program Chair for the 2002 GSA Annual Meeting in Boston. Please contact her with your ideas for sessions, symposia, field trips, and workshops.
Editor’s Note

The Bylaws of the Division stipulate that the Editor of the newsletter is appointed by the Chair on an annual basis, and that the Editor may not serve for more than 4 years. I am in my 4th year of service to the Division, and consequently, I will be retiring as Editor following the next issue (No. 55). The Chair that is elected in late summer 2001 (to take office in November 2001) will have the task of deciding upon an Editor. If you have an interest in editing the newsletter, please contact the new Chair as soon as possible. (It is likely that the new Chair will be Bill Simpkins (bsimp@iastate.edu), since he is the only one listed on the ballot.)

The Editor has the task of soliciting, compiling, and editing contributions to the newsletter. All of this is done electronically, using e-mail, Photoshop, Word, and Pagemaker. An Adobe Acrobat (pdf) document is then produced by the Editor for the printer to use, and for electronic distribution. GSA headquarters takes care of the production and mailing of hardcopy, and the sending of bulk e-mail to all members of the Division. If you want to know more, please feel free to contact me directly.

Ira D. Sasowsky, Editor
The Hydrogeologist
Hydrogeology Division Contacts

2001 Management Board
Chair: Jean Bahr (jmbahr@geology.wisc.edu)
First Vice-Chair: Bill Simpkins (bsimp@pop-2.iastate.edu)
Second Vice-Chair: Robert W. Ritzi (rritzi@wright.edu)
Secretary-Treasurer: Ralph K. Davis (ralphd@mail.uark.edu)
Past Chair: Steve Wheatcraft (steve@hydro.unr.edu)

Section Representatives
Cordilleran: Kevin Johannesson (khj@nevada.edu)
North Central: Bill Simpkins (bsimp@pop-2.iastate.edu)
Northeastern: Grover Emrich (emrichc@aol.com)
Rocky Mountain: Bill Woessner (gl_www@selway.umt.edu)
South Central: Open - TBA
Southeastern: David Evans (dave_evans@ncsu.edu)

Standing Committees
Technical Program Committee:
Anne Carey (Chair; carey@geology.ohio-state.edu), Ed Harvey, Carol Wicks
Nominating Committee:
Warren Wood (Chair; wwwood@usgs.gov), Darryll Pederson, Mary Jo Baedecker
Meinzer Award Committee:
E. Scott Bair (Chair, bair.1@osu.edu) Barbara Sherwood Lollar, Mary Anderson Ed Sudicky, Laura Toran
Birdsall-Dreiss Lecturer Committee:
Stuart Rojstaczer (Chair; stuart@duke.edu), E. Scott Bair, Stephen Ingebritsen (Lecturer)
Distinguished Service Award Committee:
Berry Lyons (Chair, blyons@wgs.geo.ua.edu), Abe Springer, TBA

Ad Hoc Committees
Historical Committee:
Steve Wheatcraft (Chair; steve@hydro.unr.edu)
Past Chair’s Long-range Planning Committee:
Mary Jo Baedecker (mjaedec@usgs.gov)
Penrose Conference Committee:
Open - TBA
GSA Committee on External Awards
Leonard Konikow (lkonikow@usgs.gov)

Representatives to Other Societies
American Geophysical Union (AGU) Hydrology Section:
Les Smith (leslie@geology.ubc.ca)
Assoc. of Ground-Water Scientists and Engineers (NGWA):
Bill Woessner (gl_www@selway.umt.edu)
American Institute of Hydrology (AIH): Joe Rosenshein
GSA Engineering Geology: Tom Holzer (tholzer@usgs.gov)
GSA History of Geology: Paul Seaber (seaber@dri.edu)
GSA Quaternary Geology and Geomorphology: Karen Prestegaard (kpresto@glue.umd.edu)
International Association of Hydrogeologists (IAH): Jack Sharp (jmssharp@mail.utexas.edu)
SEPM: Matt Davis (matt.davis@unh.edu)

Webmaster: David Diodato (diodato@thehydrogeologist.com)
Newsletter Editor: Ira D. Sasowsky (ids@uakron.edu)
GSA Council: Mary Anderson (andy@geology.wisc.edu)

Division web site: http://www.uakron.edu/geology/gsahydro